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MANIPULATION ERRORS IN COMPUTER SOLUTION
OF CRITICAL SIZE STRUCTURAL EQUATIONS

*
by R. J. Melosh

SUMMARY

The document supplements previous studies of computer-induced manipulation
errors in finite element analyses of structures. It reports and interprets
measured errors for problems ranging in size up to the critical number of
calculations, 2P where p is the computer precision. p is 27 for these problems.

It cites errors measured in analyzing mixed structural systems composed
of beam elements. It defines eight error measures and evaluates their behavior
as a function of the definition of the norm, number of calculations, matrix
density, number of equations, use of critical number components, and minor
arithmetic sequence changes. The measures provide for distinguishing the
relative value of residual and solution measures and the relative importance
of error sources.

It concludes that the error bounds based on the number of calculations is
an increasingly poor guide to actual errors as the number increases. It
recommends development of statistical data relating the number of calculations
and error from practical problems. This data would be used to indicate the
probability of success for particular problems.

It indicates that error measures are sensitive to error measuring and
problem details., Measures of residual errors are much greater than corresponding
solution error measures. Change of loading, minor changes in the arithmetic
sequence, and change in the definition of the norm--each has a significant
effect on indicated errors.

It reports that inherited and decomposition errors are the more important
error sources. It compares discretization and manipulation errcrs agnd finds
discretization more important in small problems (less than 2000 equations on
a 27 bit computer).

It recommends four error measures to be incorporated in displacement
method analyses; a numerical singularity check, positive definite checks,
a total solution energy error measure, and a stress precision check. These
are selected because of their demonstrated validity, economy, and ability to
distinguish among important error sources.
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Section 1
INTRODUCTION

This is the third in a series of reports on manipulation errors induced by (1y*
the digital computer in finite element analyses of structures. The first report
survey?2§11 the errors induced in the computer phase of analyses. The second
report examines the effect on error magnitudes of changing various analysis
parameters. This pair of reports includes data for numerical experiments on a
27 bit mantissa computer with up go 1200 equations and less than the critical
number of calculations: 13.4 x 107,

This report describes thg results of additional experiments for sets of up
to 2000 equations and 40 x 10° calculations. These data pertain to frame structures
with varying degrees of connectivity. One group of tests yields data on relative
error magnitudes in parts of the solution process and comparisons of error criteria.
The second group shows the effect of the number calculations and calculation
sequence changes when the critical number of calculations are involved.

This report describes the basis of experimentation, the results and their
interpretation. The next section cites the test process and error criteria and
justifies the experimental setup common to all testing. The third section
describes the experiments for the problems involving less than the critical number
of calculations. The fourth section cites data relevant to the tests for critical
problem size analysis. The fifth section identifies error checks recommended for
production computer analyses. The last section contains conclusions.

The assistance of Robert Steeley of Philco-Ford in modifying existing computer
codes, and managing experimental data development was vital in this study. 1In
addition, the assistance of the Ames Research Center Computer Laboratory in
implementing experiments, is gratefully acknowledged.

*
Superscripts in parentheses denote numbers of references cited in REFERENCES.



Section 2
BASIS OF EXPERIMENTS

This section describes the test problems and testing procedures for extending
study of manipulation errors into the critical problem range. It details error
measures used. It justifies the experimental basis using results and conclusions
from Ref. I and 2.

Analysis Approach

The analysis method for selected problems will use finite elements and the
direct stiffness method. 1In this method, stiffness coefficients and stress
coefficients are developed directly to express the load-deflection and stress
displacement equations in the form:

Ka =F (2-1)
T, =30 /;ﬂ,z,..,f (2-2)

where K is the symmetric, positive definite stiffness matrix,
/A is the vector of displacement components,
‘F is the vector of joint loads,
T is the vector of stresses for element i,
S, is the matrix of stress coefficients for element i, and
f is the number of finite elements in the structural system.

Equations (2-1) are solved for displacements. The solution will be
developed by decomposing K into the form:

L D L"=K (2-3)

where L is a lower triangular matrix,
0'is a diagonal matrix, and
1"is the transpose of L.
Forward substitutions will evaluate y where

I_La, = [ (2-4)

Division by the diagonals will then form z where

5 = D’é’ (2-5)

Backward substitutions will produce {\ by solving

|TA = (2-6)
With the displacements known, the stresses would be found by the multiplication
of Eq. (2-2). Since stresses are differentials of displacements, this multiplication

is intrinsically a differencing operation.

It has been shown in Ref, 1, page 135-137, that the largest error in both the
displacement and force methods, in solving for primary unknowns, involves a positive
definite matrix of coefficients. In the displacement method, this is the stiffness
matrix, In the force method, this is the redundants' matrix. This matrix remains
after displacement unknowns are eliminated from the gstructural equations.

2



Furthermore, Ref. 2, page 103, reports that the same error sources limit
analysis accuracy in both methods. Large singularity errors are possible in each
and are avoidable by care in calculation sequencing. In the displacement method
this is achieved by taking care in sequencing joints. In the force method, this is
achieved by careful selection of force redundants. Critical arithmetic errors can
arise in each method. In the displacement method these can occur in developing
stresses by differencing displacements. In the force method, these can arise in
adjusting the value of internal forces in the elements of the determinate sub-
structure due to the redundants.

Thus, examination of errors in the displacement method will study the same
t¥pe of equations as cause manipulation error difficulties in the force method.
The principal error sources in stiffness equation solution have their counterpart
in the force method.

The modified Gauss decomposition defined by Eqs. (2-3) is selected to avoid
errors introduced by taking square roots, as required in Choleski decompositicn.
These errors can be much larger than the error of one part in the last binary
position possible in the diagonal divisions, Reference 1, page 41-47, shows these
errors can result in numerical instability. Reference 3, page 667, reports a test
of 200 joint regular cantilevered beam in which these errors result in 38% error
in displacement predictions using a 27 bit mantissa computer.

Test Problems

All tests use the straight prismatic beam stiffness matrix as the basic and
only element stiffness matrix. This matrix relates a set of forces at the ends to
corresponding displacements by the equation:

L |
gl e ]
i Szl % (2-7)

Fi b3 gt

l% 3 113 2 8

a
where F is a force,
M is a moment,
a is. the beam length,
E is Young's Modulus,
1 is the bending moment of inertia,
u is a lateral displacement;
& is a rotation in bemding,
The first subscript denotes the vector direction (the axis coincides with the
beam neutral axis), and the second subscript denotes the beam end.

All tests represent the stiffness coefficients by the nondimensional coefficients
given in Eq. (2-1). All segments are required to be the same length. The total
stiffness matrix is therefore formed simply as the union of element stiffness
matrices. When stiffness variations are considered, the scalar stiffness, ZE%E »
is changed and the nondimensional coefficients scaled. These scalars are enféred
as integers so that only the relative magnitude of the stiffness scalars affects

the manipulation errors.



Structural systems modelled consist of collinear beam segments. Each joint-
is connected to one or more sequentially higher numbered joints as required to
provide stiffness matrices of various densitites. The sparsest of these matrices
represents a cantilevered beam. A completely full matrix represents a system in
which every joint is connected to every other joint. This-class of matrices is
called a "mixed structural system' because elements are neither all acting in series
nor all in parallel. Since the series system is the sparsest matrix and the all
parallel is full, the mixture can be represented by the percent of non-zero
elements in the matrix, the matrix population density.

Table I particularizes the form of the stiffness matrices for all mixed
structural systems. In test problems, the K1 » K 2T’ and K2 partitions are
those indicated as partitions in Eq. (2-7). %he %otal unres%rained stiffness
matrix is characterized by the matrix order, its bandwidth, and the geometric
progression ratio. If this ratio is 1.0, the structure is ''regular'". For this
class of matrices, the solution wavefront and matrix bandwidth are the same.

The beam element stiffness matrix is chosen as the basic unit because previous
study shows it involves larger manipulation errors than rods, membranes, or prisms.
Decomposition errors for cantilevered beams were shown to wvary as Bﬁfwhere f
is the number of finite elements; b the number base; and p the computer precision.
Decomposition error for a straight hinged rod, on the other hand, Vag&eiaﬁs {b-v:q,
In the worst case, singularity error limits the number of beams to ib P 5but £b
rod sigments can be tre tqﬂ, Substitution errors vary as 360Fb™F for cantilevered
beams, but only as Z65 ib for rods. (p-27). The force equilibrium equations
are written first in Eq. (2-1) to avoid unstable error propagation, a phenomenon
peculiar to the beam (and plate) analyses because they involve second order
difference equations. (See Ref 1).

The Table I class of mixed structural systems is selected for study because
it simplifies development of coefficients in perfect numbers. It facilitates
evaluation of the effects of matrix order, sparcity, number of calculations and
relative stiffness, on manipulation errors. Since, as shown in Ref. 2, the
completely full regular mixed structural system cannot be numerically singular, it
admits evaluation of manipulation errors when equation sort is non-critical.

Solution Method

Policies for solving the load-deflection equations are as follows:

1. Coefficients of the stiffness matrix will be express in perfect
numbers (integers).
2. The equations will be treated in the same sequence as they are

expressed in Table I with boundary conditions imposed in the
last equations.

3. Displacement boundary conditions will consist of clamping a
single joint. Loadings will consist of reinforcing loads of
equal value, at every joint. Two loadings will be used. 1In
the first, every component of the load vector will be 1.0.

In the second, every component will be (2?2 ])/227 . This
loading is the "bound" loading.

4. All structural analysis calculations will be performed in
single precision using a computer with a 27 bit mantissa.

5. The mode of arithmetic will be truncation.



TABLE I

MIXED STRUCTURAL SYSTEMS

- N N = matrix order
_ b } u u = uncoupled size
]
- [} _ . «
uE . b = semibandwidth
1K1 Kyg Kyjg Kyt 00 =N -u
Koo Ky Kyy Ky5 0 0 i =row number
K33 K3y Kgs K36 0 r = geometric progres-
N sion ratio
Kio By Kug Ky
K.. K. K ki1 g
55 56 57 = element stiffness
Sym. k'1r2 koo
Kes Kgv -
il a7 ]
Kj1 = kg ®0-1) Kip = K13 =Ky “kyg
Kog =kgp + (b-1kjyr Kog =Koy =Ky =1k
~ . 2 e .2
Kgg = (Lir)ky, + (b-1)k r Koy = K35 =Kg6 =Tk
Kgq = QT 410)k50 + (B-1)kjyr Kys = Kyg =Ky ~T Kypg
_ 2 3 4 4
Kgs = (rirdr)ky, + (b-2)k; ;v K56 = Kg7 =T kg
_ ,.2 3. 4 5 5
Kgg = (r +r #17)kyp + (b-3)k T Kgr =T kg
‘ 3. 4 5
‘K77 = (r +r +r )k22
_ I |
: Therefore = flkll + f2k22 and Kij = klzr
; _ _ i-1 .
where f1 = (bi ) if bi> 1
0 .
. ifi=1
£ = rl_zgl - ') if i
2 {71 i>1, r#1
r (1-r7)
n ifi>1, r=1
. _i-1 ifi-15b-1
with T= 1.1 ifi-1>b-1




The first policy avoids random inherited errors. The second is comnsistent
with the Ref. 2 results. These show that joint sequencing based on minimizing
wavefront is usually sufficient and sequencing from the most flexible to least
flexible region is best. The third and fifth policies are selected to maximize
manipulation errors. Reference 2 reports that manipulation errors reduce as
additional kinematic constraints are imposed while Ref. 1 shows substitution
errors are maximized by using reinforcing loading. Truncation is used since it
incurs larger standard deviations of error than rounding. Twenty-seven bit single
precision is selected to complement comparable precision test data cited in Ref. 2.
Reference 1 shows errors vary inversely with the precision, so results of tests
reported here can be projected to any other binary computer.

Manipulation Error Measurements

Error measures include evaluations for decomposition, numerical singularity,
diagonal division, substitutions,and total closure. These evaluations are performed
in a precision higher than for the solution precision, Double-precision was used
here in evaluating error measures. The error measures are described in the para-
graphs that follow,

Decomposition Error Measure.- The decomposition error is measured by:

€ = (‘EA[ /k,l:[ )MAz, £ =12, ... N (2-8)

where €4 1is the decomposition relative error,
N is the matrix order,
i K-LD'LT
is the diagonal element of the matrix and

E,.
K;; is the corresponding diagonal of K.
Singularity Error Measure.- This error is measured by:
‘_.
b i (2-9)
P = -
~3 rs

where € is the singularity relative error, and
r; is the minimum (Eui,/k;,) where Dew
is the {™diagonal of D.
p 1is the precision and
b is the base (2,)

This measure is modified from that given in Ref. 2 to reflect maximum errors
rather than expected.

Substitution Error Measure.- Forward, diagonal, and backward substitutions involve
solving equations of the form, - ’

A'Io = ¢ (2-10)

where A is any of the decomposition factors L, LT, or D-l,

x is the vector of unknowns, and
¢ is the known right hand side.
Then, the substitution error measure is given by

. = | Ay-c
8 Iell

(2-11)




where ZF is the substitution relative error, and
I 1is the norm "operator".

Note that Eq. (2-11) defines error measures involving -residuals.

Measures of substitution error are taken for forward, €g,, diagonal, &g, ,
and backward €3 substitutions. Both Euclidean norms and the norm which is the
sum of the absolute value of vector components are used.

A second error measure for evaluating back substitution errors is the
direct back substitution error measure. It is defined by

o = [PASEA|
83 4l (212

where 3@; is the higher-precision error measure for back substitution relative
error,
&&D is the value of ¢4jdeveloped using higher-precision arithmetic
(p=54), and
ﬁ&j is the value of 1%£obtained using basic problem precision arithmetic

Total Error Measure.- This error is measured by evaluating,

_ I Ka=Fl
S 7 R (2-13)

where C€¢ is the total relative error.

This measure like the substitution measures of Equation (2-11) measures the
imbalance in the equations when the calculated solution is introduced into the
original equations.

Equation ' (2-13) provides a residual measure of total error. An alternate

(p=27).

measure is developed by considering the elastic work. The work error is measured

by
AF - a-Ka
ew ATF (2-14)

where CQJ is the work relative error.

The first term in the numerator is external work and the second, the internal work.
Note that this error measure is signed. The negative sign indicates that internal

work exceeds external.

The work error measures total error by evaluating the internal work using
Eq. (2-3) and (2-6), i.e.,

_— Tn=! - -l
AKa=a"'"D"La = §TD 3 (2-15)
Equation (2-14) transforms Equation (2-13) to the form

T T -1
a’F 2 D#— (2-16)

81“J .CI




where E€py measures the total work error.

The relation between the total error and component errors can be developed by
considering the interaction of errors in each operation. Suppose the error in
the solution is such that

-1
A=K (I+e.)F (2-17)
The corresponding decomposition can be written in similar form as

LrD_tL= K (1-+CD) (2-18)

Then the solution, using the decomposition algorithm, can be expressed by

a= (14 ey,) D7 (Treg,) U7 (T+ea (Tee,)F
¥ K (I+ey+eqteg* ) F

2-19)

where terms involving products of the error matrices have been assumed negligible
and dropped in the expansion. Then, comparing Eq. (3-3) and (3-5) and taking the
matrix norms,

€. < ” 82” (2-20)

with ez = ”eD “ + “eg,“ + “ eaz” + " eBL’J”

é; is called the summed error measure.

Number of Calculations,.- To relate error to the number of calculations, the formulas
given in Table II are required. These define the calculations involved in each of the
equation solving operations in terms of the parameters defined in Table 1., The number

of calculations in forward and back substitution are the same.

In applying these formulas to matrices of the class defined in Table I, X
varies by one in alternate rows for beam elements. Therefore, X is taken as the
average bandwidth (wavefront).

These error measures are selected based on the experience reported in Ref. 1
and 2. Only equation solution errors are checked because input output errors are
negligible, and coefficient generation errors are usually small, controllable, and
easily sensed. The decomposition error, Equation (2-8) was found adequate, though
it requires 25“N+l) calculations, where W is the wavefront. The singularity error
measure was found to be the most important and efficient measure for sensing poor
calculation sequencing. The substitution measures are introduced to facilitate
numerical evaluation of the relative importance of error sources. The direct
back substitution measure is used to determine the importance of error measure
definition. The work measure is proposed as an efficient measure which could be
included in production programs. Residual error measures are selected because
they provide exacting measures of error which can be used to estimate errors in
stress predictions. These errors were shown to be unbounded in displacement
analyses. ’



The data developed in evaluating these error measures permits determining
the magnitude of errors as a function of the number of calculations and equations.
Reference (2), pages 58-65 and page 101, shows error bounds based on these para-
meters are usually one to two orders of magnitude high for displacement analyses
and one to four orders high for force. Tests for both methods show that the bounds

are realizable in computer-analyses,

TABLE 11

Formulae for Number of Calculations

Operation Multiplications Additions

By b )+ 2(Erb- 5zt 20+ 2 )@ 2w

Decomposition U (2 2

Division (u-\- b) = N 0
Zub + b2+ b & 2N Zub+ b%Zu-b™ ZN4

Substitution



Table II1

*
Subcritical Test Problem Sizes

Problem No. of Calculations
Number Equations Density % Decomposition Substitutions Total
1 50 13.0 5.63§ 6.06§ 1.173
2 100 6.75 1.133 1.213 2.343
3 200 3.43 2.253 2.403 4.653
4 200 5.37 5.814 3.994 9.805
5 200 20.2 8.685 1,614 1.035
6 200 28.7 1.805 2.314 2.035
7 200 36.9 3.015 2.984 3.315
8 200 44,5 4.465 3.604 4.825
9 200 51.6 6.113 4.183 6.524
10 300 3.61 8.744 5.994 1.475
11 300 11.3 8.885 2.004 1.095
12 300 17.4 2.]_55 3.124 2.465
13 300 23.3 3.905 4.204 4.325
14 300 29.0 6.113 5.243 6.633
15 400 1.73 4.504 4.803 9.304
16 400 2.72 1..174 8.004 ]..975
17 400 7.56 9.385 2.374 1.185
18 400 11.4 2.].35 3.594 2.495
19 400 15.0 3.784 4.794 4.264
20 500 2.18 1.465 1.004 2.465
21 500 6.85 1.505 3.364 1.835
22 500 9.90 3.153 4.903 3.644
23 600 1.16 6.754 7.204 1.404
24 600 1.82 1.754 1.204 2.954
25 600 3.13 5.32S 2.154 7.475
26 600 5.73 1.803 4.043 2.214
27 700 0.99 7.884 8.404 1.634
28 700 1.56 2.044 1.404 3.-444
29 700 2.69 6.213 2.513 8.724
30 800 0.87 9.004 9.604 1.864
31 800 1.37 2.344 1..604 3.944
32 1000 0.70 1.13 1.20 2.33
* e e 4 4
Exponents indicate a power of ten. e.g., 0.1 = 0.1 x 10 .

10
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Section 3
TESTS OF SUBCRITICAL SIZE PROBLEMS

This section describes experiments and their errors for problems involving
less than 13.4 x 10° calculations. These data give values for all the error
measures described in Section 2, as a function of matrix order, the number of
calculations, and matrix sparsity.

Subcritical Test Problems

Table III cites the set of 32 subcritical test problems. The table lists
equation order, density, and the number of calculations involved in solution.
These problems vary from 200 to 1000 order. They include from 606 to 3.94 x 10
calculations.

4

The table below cites similar data for equations associated with the analysis
of steerable antenna reflectors. Comparing data for these problems with those in
Table IV suggests that the test problems have typical characteristics. The trend
toward decreasing matrix density with increasing problem size signals the tendency
for bandwidth to have a limiting value independent of problem size.

Table 1V

Equations for Steerable Reflectors

Reflector No. of Population
Size Equations Density

40 feet 105 0.270

60 feet 183 0.205

85 feet 282 0.180

The test problems were solved with a computer program which would work with
the stiffness matrix in-core. The sequence of calculations in decomposing the
row was as follows:

1. Form the reciprocal of the diagonal.
2, Multiply all elements in the row by the reciprocal.
3. For each element-with higher row and column number than the diagonal,

perform the subtrac on .
1' = A — 7"““]" (3-1)
4k Jk Lic

where j ='i,b#|_,...N; the row number of the element being adjusted
% A+l,4%2,,.. ...N, the column number of the element being

adjusted.
These steps were repeated as i varied from onme to N, the matrix order.
These operations produce coefficients of the L matrix with coefficients
of D on the diagonal.

The remaining solution steps are as follows:

4, Evaluate each 4, in turn by subtracting components of the inner product
from the loadihg vector component.

11



5. Divide each _i by the corresponding D, to evaluate E;'
6. Evaluate eachl x.in turn by subtractiné components © %he inner product
vector from theJZj component.

Test Results

Table V lists values of the measured errors for the 32 test problems This
table cites error for the bound loading. (See item 3 'of solution method on page 4).
It cites Euclidean norms of the error vectors.

There is little difference in errors for these two loading conditions. Over
the 32 problems the difference in measured errors between loadings with components
of 1.0 and the bound loading is generally less than 1.6%. Each loading gives
maximum total error in about half of the rums.

The selection of the types of norm, on the other hand, has an important effect
of the magnitude of indicated errors. The ratio of the Euclidean to the absolute
norms varies from 1.13 to 1.31 over the problem set for the total error measure.
This suggests that at least 187 deviation from an indicated trend can arise if
different norm measures are taken. The same range of ratios of errors as a function
of norm is also observed for substitution errors.

Interpreting Error Data

There is a redundancy of data in Table V. Two independent measures of total
error are provided by € and &qw . A third total error measure is reduced by
applying Eq. (2-19) to the data. Furthermore, €gz and egg provide two independent
measures of back substitution error. To reconcile the differences in magnitude of
these comparable measures, the subset of problems representing cantilevered beams,
problems 1, 2, 3, 15, 23, 27, and 30, will be examined in detail.

Figure 1 shows the relations between error in tip deflection prediction and
the number of equatfons for these problems. The continuous curve portrays the exact
manipulation error for the bound loadings. The long-dashed curve shows how the

energy error varies with otder. This curve is plotted directly from data in Table V.

The exact error is developed by comparing the analytic solution of the
difference equations with the computer predicted tip deflections. The analytic
solution expresses tip deflections as

o
/Za;N_“:QE_?(BJ‘A-*— \ZT%+77%=27) (3-2

where J = N/2. The evaluations of Eq. (3-2) and the associated tip deflections and
errors are summarized in Table VI. These data show the bound loading has larger
errors than that involving perfect loading. This is due to the persistence of
perfect numbers through forward substitutions with the unit loading and is reflected
by the zero errors in Table V.

Both of the curves in Fig. 1 show a monotonic increase in relative error as
the number of equations increases. The exact error is about ten times the indicated
energy error throughout the range. Thus the energy error measure corrélates with
the actual errors in displacements.

12
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Table V

Test Results for Subcritical Problems

Decomp Fwd. Div. Bkwd, Dbl. Prec. Total Work
-1 -1
£y ). Iy- FI §0z-ull A=l N#p—gl IKa-Fl AF—<D
Ko, IFF I |iég,la llglf A NIl A’ZF 7
Problem _ : - )
Number €p €ai €e2 Ces €e3 o Erw
1 0 1.56:; 5.02:18 1 77:2 9.03:3 2.55:3 3.25:2
2 0 3.117,  1.957)0  8.07_.  1.3877 4377  5.46 4
3 04 6.3605  1.197, 3.127,  5.96_5  4.787,  9.04
4 2.2475  9.50_5  6.56_g 1.457)  5.9475 2,08 .  1.227 g
5 1.4977  6.34_ 5 6.297, 10370 6.127;  2.3270  2.30 4
6 2.1525 6.642 7.33 9.46_ 6.25_ 1.74 ¢ 3.18
7 2.875, 7.2l 5 6.36 4 9.03_5  6.44_5 1.62_5  7.88_,
8 3.51°5  7.75.;  5.72.4 8.78];  6.55.;  l.64p  1.25 )
9 4.09 o 8.32 .  8.14 g 8.15,  6.62 5  1.65;  1.66 ¢
10 2.2470 11970 7.17°, 2.187)  9.227)  4.62_. -3.26
11 1137 9.1370  6.29 4 1.63°,  8.79_5  6.24; -8.58
12 1.8177  9.1877  6.037, 1527, 8.837  3.947. -1.137g
13 25972 9.90" . 5.72, L.50T¢  9.347  3.20°0  A4.l4Tg
14 3.52 1.047,  6.257  L.487) 9,767,  3.0477  6.76_,
15 0, L27; 6.52 1.367,  1.17./  1.137,  1.997¢
16 2.01°,  1.85 /0  7.017 2.86 . 1.237.  8.16_,  2.42 ¢
17 8.020  1.187.  6.29 ¢ 2,05/ 1.07,  l.167, -5.52 ¢
18 1.537, L8/  5.7974 2,02 L.10.  7.50 7 -3.61
19 2,617, 1.237)  6.447g 1.97.,  l.157.  5.8377 -1.87 4
20 2.24_7 2.28_6 6.14_9 3.92_6 1.59_6 1.41-3_4 4.79_8
21 1.087)  1.517)  6.017¢ 2.597.  1.330)  1.59° . -6.66 ¢
22 1.83 1.47 o 5.62 1, 2. 64 , 1.38 1.1 -7.39 5
23 0-8 1.97_6 3.51_9 2.85_6 1.72__6 5.41_3 3.30_7
24 2.03° . 2.78 .,  7.01° ¢ 4.40" 1.837,  1.907;  -4,227¢
25 51977 2.097)  6.717g 3.437.  1.60°0  5.407) -2.117¢
26 1.08 1.837)  6.947;,  3.200)  1.607°  2.34% -7.417
27 05 2337, 2.397, 4.257.  1.86_y  1.087,  5.09 ¢
28 224" 3.15 . 6.8l 5.56 ¢ 2.17 ¢ 2,797, -1.03 ¢
29 5.20 2.447 . 6.3370  4.167, 1.83 °  7.72, 2.22 2
30 0g 2.56_ . 1.7l 5.38",  2.22_ .  1.777,  5.05 g
31 2.24 3.730,  6.437],  5.847,  2.477/  3.34°  -6.5077
32 0 2.85 9.83 7.91 2.96 4.09 4.57
* N _ -4 A
Exponent implies a base of 10. e.g., .l = ,1 x 10

0€$= 4.48-8 for all Pgoblems except 1, 2, 3, 15, 23, 27, 30, and 32.
For these, &g = 9.96 °. & = b'-%,
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Problem No. of
Number Equations
1 50
100
3 200
15 400
23 600
27 700
30 800
32 1000
*

Table VI

*
Cantilevered Beam Analysis Errors °

Tip Defl.

Eq. (3-2)

o O © O O O © O

Powers imply a ten base. e.

0 . . .
Equations in optimum sort, b =

.11364167
.16889500
. 26005817
.40802330
.2052052510
10
.37945088
10
.64640932

.15750146"

AT o I U « Y

g., 3. =

N -
ey 1.0 Q- Bound e
5.888 3.18™/ 2.55
5.9277 6.467 7 4.37
1.4177 1.3276 4.78
7.2777 2.627° 1.13!

—. 3,887 5.41"
- 4.3778 1.08%
1.5870 5.237° 1.772
— 6.587° 4.093

7
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The last column of Table VI repeats selected data from Table V. Comparing
these data with errors listed in the next to last column shows the total residual
error measurements also exhibit monotonic error growth. However, error magnitudes
are four to nine orders of magnitude greater than actual deflection errors and
vary over the problem range.

An explanation for this hypersensitivity is exposed by examining the process
of error evaluation. Multiplication of the stiffness matrix by the displacements
is intrinsically a differencing operation. As deflections increase, this incuss
critical arithmetic. For example, in problem 2 deflections of the order of 10
must be differenced to develop load components of the order of 100. Therefore
seven digits of accuracy are lost in the process. Since only 8.2 digits are
carried when p = 27, the accuracy of is a maximum of 1.2 digits. Since the
last digit of the deflections involves truncation error, the residual error is
non-zero. 1I1ts exponent is dependent on the exponent for the deflections and the
calculation precision. The exponent of the error to the base 10 cannot be less
than about 8.2 less than the deflection exponent, which has little to do with
analysis error. Thus the total residual error does not reflect the accuracy of
deflection predictions and cannot be expected to correlate with it.

These data show that large residual errors may disguise a relatively accurate
analysis (6 digit accuracy for the 8 digit precision calculation in problem 2),

On the other hand, small residual errors can be expected to correlate with solution
accuracy. This is illustrated by comparing the errors indicated by the two back
substitution error measures €g3and eBb'

Figure 2 facilitates this comparison. It displays plots of back substitution
residual and solution errors for two sets of problems from Table V. The continuous
curves pertain to the cantilevered beam problems. The dashed curves are for
problems 4, 10, 16, 24, 28, and 31. Since the solution error measure is based
on double precision analysis it must be more accurate in predicting error than
the residual. For the cantilevered beam problems poor correlation is obtained
between this measure and the error indicated by the residual. This poor correlation
is attributed to the critical arithmetic involved in the evaluation of the residual
error megsure. When the sparsity of the stiffness matrix is decreased (as for
the dashed curve cases) good correlation is obtained between the error measures,
Even these curves exhibit a tendency to lose their parallelism as the number of
equations increases. Since an increase in the number of equations results in
increasing deflections, this deterioration of the residual measure echoes the
increasing criticality of arithmetic in the error evaluation.

Because of the infidelity of the residual error measures, the sum of the
errors does not compare with the total error. This disagreement with Eq. (2-19)
is due to the large error in evaluating €.. Despite this disagreement, the residual
measures are expected to indicate errors for other than the cantilevered beam

problems in these tests. For the cantilevers, they provide exaggerated estimates
of errors.

The cantilevered beam problems can also be used to illustrate the relation
between manipulation and discretization error. Consider that the beams are
loaded with a uniform pressure =§ , couples of value Q at each join§)and a tip
load of magnitude%qé: Then the tip deflection is given by

/Z”;~-|= {QE% (374 +1272) (3-3)
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The difference between Eqs. (3-2) and (3-3) determines the discretization
error. This difference is never zero, regardless of how large N becomes. The
relative discretization error, however, diminishes to zero monotonically as
J increases to infinity.

Figure 3 provides a plot showing the total, manipulation, and discretization
error for these beams. The total error is depicted by the continuous curve.
This is obtained by comparing computer generated deflection predictions with
those of Eq. (3-3). The manipulation errors are those cited in Table VI, The
discretization error is found from Eqs. (3-3) and (3-2).

The total error reflects a monotonic decrease of discretization error and
monotonic increase of manipulation error as the number of equations increases.
The interaction of the error components produces a total error curve of quadratic
form. For these problems, the manipulation error reduces tip deflection predictions
and discretization provides overestimates. Thus, the total error is expected to be
zero for two problem sizes. The curve of total error shows both of these occur
at more than 1000 equations. Discretization error dominates the total error
trend until the number of equations exceeds 800.

Error Magnitudes

To interpret error magnitudes, their values will be compared with the maximum
errors associated with that simple series subtraction used in Ref. 1, page 21. The
subtraction operation consists of performing a number of subtractions, N¢ , such that
the result of each subtraction yields an answer which is opposite in sign to the
next component to be subtracted.

Reference 1, Section 2, shows that the error in this operation, when the worst
number representation is used, is greater than for any other 'simple arithmetic"
operation. Moreover, it has a larger error bound than vector multiplication. Study
of this operation identifies an error bound. Since this bound is both dependent on
the sequence of arithmetic and the number representation, it is expected to define
an upper bound for error for computer calculations, independent of the analysis
involved.

Reference 1, page 21, concludes that the error must be less than

= |°F
em = b N¢ (3-4)

where e is the maximum relative error, and

Nc is the number calculations.
Equation (3-4) is an approximation in the region where error growth is maximum,
When N. < bp-2, the critical number of calculations, the error may exceed that
given by Eq. (3-4). When N¢ > bP, the error bound will be less than that of
Eq. (3-4). Equation (3-4) is an approximation in the region where error growth is
maximum. Errors from each error source will be compared with those of Eq. (3-4).

Decomposition Diagonal Errors (eD)

Figure 4 is a log-log plot of the decomposition error for the 24 subcritical
test problems with non-zero error. Each continuous curve applies to a particular
number of equations. Dashed curves define contours of equal matrix density.
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These data show decomposition diagonal errors:

1, Increase with increases in the number.of calculations for a given
matrix order,

2. Increases for a given matrix density as matrix order 'increases, and

3. Decrease for a given number of calculations as matrix order increases.

The short line segment shows the slope that the curves would take if the error
were directly proportional to the number of calculations. The slope of both the
continuous and dashed curves are always less than the segment slope. The error
magnitudes indicated in Fig. 4 are 10" of those given by Eq. (3-4) for these
suberitical problems.

Forward Substitution Errors (eBl).- Figure 5 is a log-log plot of the forward

substitution errors for the 32 subcritical problems. :Each continuous curve applies
to a particular number of equations. Dashed curves define contours of equal matrix
density. The eircled points designate cantilevered beam problems.

These data show forward substitution errors:

1, Decrease then increase with increases in the number of calculations
for a given matrix order,

2. Increase for a given matrix density as matrix order increases, and

3. Increase for a given number of calculations as matrix order increases.

Indicated error magnitudes are less than 10_50f those given by Eq. (3-4).
Note that the cantilevered beams display smaller errors than other problems.

Figure 6 provides plots of forward substitution errors against the number of
equations. Continuous curves connect problems with the same matrix joint bandwidth.
One set of problems consists of the cantilevered beams (joint bandwidth = 2). The
second set includes errors of problems 4, 16, 24, 28, and 31. (Joint band = 3).
These data show that though the substitution errors increase linearly with matrix

order for the cantilevered beams the growth is more rapid when the bandwidth
is larger.

Diagonal Division Errors (eBz and ES).- Since the maximum relative error in division

o+l . ]
is b°P 1, the maximum value for the diagonal division error for these tests is

1.492 x 10°°, Assuming it is equally likely that the error is zero or one in the
last bit, the expected error is 7.46 x 10-9,

The 24 experiments reported in Table V (omitting the cantilevered beam cases)
exhibit an average diagonal division error of 6.18-9, Considering both sets of
loading conditions, the range of the error varies from 5.61-9 to 8.1479, Mo
concerted trend for errors to increase with matrix order occurs, or would be

expected. Similarly, error mag: itudes are independent of matrix population
density.
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The set of problems representing cantilevered beams show division errors
that are much smaller than the average. Moreover, the errors decrease monotonically
with problem size. This occurs because half the diagonals are perfect numbers
and result in no residuals though.the denominator norm is increased nevertheless.
Since this is unrepresentative, these errors are disregarded in forming the average
and noting trends above.

For all problems, singularity ratios had a minimum value of 0.125. This
confirms the adequacy of equation sequencing in the analysis. It indicates the
loss of a maximum of the last three binary places in the mantissa due to numerical
singularity. Thus, the maximum relative error is the determinant of the stiffness
matrix, and hence in the answers, due to numerical singularity is 0.996 x 107/,
The expected error is half this amount. ’

Back Substitution Errors (eBlR),- Figure 7 is a log-log plot of the back substitution

errors for the 32 suberitical problems. Each continuous curve applies to a partic-
ular number of equations. Dashed lines define contours of equal matrix density.
Residual errors associated with cantilevered beam problems are two orders of magni-
tude greater than those for the other problems, for the same number of calculations,
so these results for cantilevers do not appear on the graph.

These data show back substitution errors:

1. Decrease with increase in the number of calculations for a given
matrix order,

2. Increase for a given matrix density as matrix order increases, and

3. Increase for a given number of calculations as matrix order increases.

Error magnitudes indicated in Fig. 7 are 10-3 of those given by Eq. (3-4).

Relative Importance of Error Sources.- The data in Table V indicates that the sources
of error in order of decreasing error magnitude are back substitution, forward sub-
stitution, decomposition, and division errors. This ordering is deceptive, however,
because the implications of a given magnitude error depend on error source. More-
over, this evaluation omits consideration of inherited errors. An examination of the
cantilevered beam problems can provide same of the desired perspective.

Figure 8 shows the tip deflection error, due to each error source, as a
function of the number of equations for the set of cantilevered beam problems.

The displacement error due to inherited error is a plot of
) 2
e, = — 0.229N*Y (3-5)

where e is the relative error in tip deflection,
N° is the number of equations,
¢~ is the relative error in the diagonal stiffness matrix
coefficients, &= 227
This equation is developed from data in Table VI of Ref. 1. It is assumed that
every diagonal of the stiffness matrix has an error of one part in the last binary
position due to addition of element stiffness matrices.
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The displacement error due to decomposition error is also defined by the function
given by Eq. (3-5). 1In this case, however, ) is taken as the maximum value of decom-
position érrotr measured in the 32 tests: = .224 x 10-7, (This value is more realistic
than the zero error of cantilevered beams).

Since the forward substitution error implies an error in the loading and the
equations are linear, the consequent error in tip deflections are taken to be
equal to the measured forward substitution errors. These result in the lowest
curve on the figure.

The effect of diagonal division error is to simulate an error in the determinate
of the stiffness matrix. Consequently, these errors also are direct measurements
of implied solution errors. These errors, however, are so small that they do not
appear in the range plotted.

Back substitution errors directly effect predicted displacements. Thus these
solution errors, as measured, are plotted for the comparison.

Figure 8 shows that the relative importance of errors based on solution
implications is, in decreasing order of importance, decomposition, inherited,
back substitution, forward substitution, and diagonal division. Decomposition
and inherited errors are much more important than substitution errors. If inherited
errors are dominant, Eq. (3-4) (which is based on a simple beam problem) may be
used to furnish a guide on the relation of error and precision.
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Section 4
TESTS OF CRITICAL SIZE PROBLEMS

Tests to evaluate the significance of performing more than bP calculations
require the use of a different computer code. This section describes results
of additional tests to evaluate the effect of changing details of the solution
process to facilitate critical zroblem solution and error results for a set of

problems involving from 55 x 10% to 40 x 106 calculations.
Modified Analysis Approach

Efficient data handling requires modifying the sequence of arithmetic for
solving large problemsusing the algorithm defined by Egs. (2-1) through (2-6).
Details of the data handling for the critical size problems is described in
Ref. 3. The following changes to the sequence of performing the calculations
described in Section 2 are involved:

1. During decomposition, sum all subtractive terms before making a
single subtraction to modify the Jk element for all elements in

)
rows up to row 3 .

2. During decomposition do not divide elements in the row by the
reciprocal of the diagonal.

3. No changes.

4, and 5. Solve directly for &. by subtracting components of the inner
product from the loading 5mponent and dividing the result by the
diagonal.

6. Solve for each x4 by subtracting components of the inner pﬁpduct

vector from the ;j component and multiply the result by e{-' .
These minor changes result in no increase in the number of non-trivial
calculations. They involve only minor changes in the sequence of arithmetic.
The change represented by 1,above, would be expected to reduce manipulation
error. The changes represented by steps 2 through 6 may increase, decrease, or
not affect error.

Manipulation Error Measurements

Only two measures are used in the critical size problems.
The first measure is the numerical singularity test. The second measure is a
solution test based on comparing the calculated deflections with the exact solution
of the computer difference equations. This measure takes the form

e = Ill§;a- ZSACLH
[AN W,y
where €, is the relative deflection error,

A is a deflection component, and
the subscript E means "exact'" and the subscript C, "“calculated."

(4-1)
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The Fuclidean norm is used as a measure of the numerator and denominator of
Eq. (4-1) for most test problems. For cantilevered beam problems, the maximum
error component (tip deflection) is used herein.

For most problems, a new analysis procedure was adopted so the exact solution
would be known. This process involved the following steps:

1. Assume the displacements in the form of perfect numbers. For the
analyses three sets of displacements are assumed. The first,
involves unit displacements for every Aj_; the second, A
involviélunit displacements in odd numbered equations only, and the

third, , has unit displacements in even numbered (moment) equations
only.
2. Multiply the stiffness matrix times the assumed displacements. All

the stiffness coefficients and assumed displacements are perfect
numbers. In addition, each component of the multiplication solution
vector will have a value less than 134,217,727 (the maximum number
represented in the mantissa when p = 27, b =2). Therefore, the
product will be taken with zero error.

3. Solve the load-deflection equations using the loadings from step 2.

4. Calculate the error using the vectors of step 1 as the exact solution
and those of step 3 as the calculated.

Critical Test Problems and Results

The two sets of test problems and test measurements are summarized in
Tables VII and VIII,

Table VII cites problem parameters and error measurements for the set of
problems to evaluate the effect of the changes in the solution process. These
problems represent uniform cantilevered beams with various numbers of joints and
loadings. Data in rows 1l through 5 of this table define the magnitude of the
numerical analysis problem. Data in rows 6 through 9 relate to analysis of these
systems using the analysis methods described in Section 2. Rows 10 through 13
cite results using the manipulation error measurements and analysis methods just
described.

Table VIII lists data for mixed system tests to evaluate errors when the number
of calculations approaches and exceeds bP, the critical number. Again rows 1 to 5
cite problem size data. Rows 6 through 8 list measured relative deflection errors
for the three loadings of interest. '

Error Magnitudes’

Analysis of data in rows 6 through 9 of Table VII shows that minor changes
in the arithmetic sequence can have a significant effect on error magnitudes.
Row 8 gives the tip deflection relative error using the modified analysis approach.
Row 9 lists the same type errors using the analyses approach described on page 4.
Comparison of these two rows of data shows the modified approach has from 1.33
to 1.40 times the error of the standard. For these problems, decomposition is
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Table VII

Solution Process Test Problems

Problem A B C D E F
No. of Equations 600 700 800 1000 1600 2000
Density, % 1.16 0.99 0.87 0.70 0.44 0.35
s 3 3 3 4 4 4
N , decomposition 6.75 7.88 9.00 1.13 1.80 2.25
¢ 3 3 3 4 4 A
Nc’ substitutions 7.20 8.41 9.61 1.20 1.92 2.40
N, total 1.39% 1.62% 1.86% 2.33% 3.72% 4.60%
< 9 9 9 10 11 11
Exact Defl. 2.05205245 3.79450877 6.46409314 1.57501458 1.02912373 2.5100583
Eq. (3-2)
9 10 10 11
Calc. Defl. 2.05204144 3.79448570 6.46404833 1.57500073 1.02911070 2.50996478
ey 5.42'6 6.08'6 6.93'6 8.78'6 1.277° 3.74'5
ex(Table V) 3.88'6 4.37'6 5.23'6 6.58'6
Density, % 1.82 1.56 1.37
e 2.88"> 4,053 5.1172
e 4.0273 5.4473 7.08"2
e 7.277° 9.837° 1.257%
6 6

*Exponents imply a base of ten, e.g. 8. = 8.0 x 10~
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Table VIII

Critical Size Test Problems

Problem G H 1 J K L M N
No. of Equations 200 300 400 400 500 600 800 1200
Density, % 5.16 29.0 15.0 72.5 9.90 3.13 42.0 29.3
N,, decomposition  6.11° 6.11° 3.78° 1.017 3.15° 5.32% 2,477 3.94/
N,, substitutions  4.18" 5. 247 4.79" 2.34° 4.89" 2.15" 5.40° 8.45°
N_, total 6.53° 6.63° 4.26° 1.03’ 3.64° 5.54% 2.52 4,02’
ep 8.067° 1.617° 3.557° 6,230 67470 4as? 1.087% 1317
ep 2.027° 3.927° 8.567° 1.10"% 1.567% 8.727" 2.917% 2.517%
en 8.747° 1.667° 3.527° 5.03° 5.0 7.737% 1.407% 1.207%



is exact. Therefore the difference in solution details involve only those in the
substitutions. 1t is concluded that an algorithm must consistiently show more than
a fifty pereent reduction in error to be considered a significant improvement.

Comparing the data in rows 8 and 11 through 13 of Table VII with that in

row 8 leads to three additional conclusions:

1. Error magnitudes are sensitive to the choice of loading. This
sensitivity is reflected by a maximum factor of 41.3 between
errors in the last three rows.

2. The relative error for two loadings cannot be added to predict the
error for the sum of the loadings. TIf this were possible, ep would
be equal to e + & . This result reflects the nonlinearity

of error with loading condition.

3. The cantilevered beam reinforcing loadings evokes relatively large

errors. Comparing errors of row 6 and row 11 in Table VII shows

the reinforcing loaading (row 6) incurs a minimum of a factor of

times the error of the worst alternate load. This result confirms

a conclusion of Ref. 1.

An analysis of data in Table VIII confirms the first two conclusions
Row 7 displays errors that are a maximum of 2.7 times those in either row

The sum of the row 7 and 8 errors does not equal the measured row 6 error.

Figure 9 displays the measured errors as a function of the number of

above.
6 or 8.

calculations.

The bound given by Eq. (3-4) is also shown. This plot shows measured errors are
several orders of magnitude below the error bound. There is no indication that
errors increase dramatically when the critical number of calculations is exceeded.
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Section 5
PRODUCTION CODE ANALYSIS CHECKS

The error measures used in this study were defined to discriminate among
error $ources and to study problems of error measurement for manipulation errors.
Data from the test problems have identified the adequacy of the measures. 1In
this section particular measures are recommended and others rejected for use in
a production computer code for structural analyses. All of these checks should
involve special coding to add them to an existing computer code. Use of matrix
manipulation instructions to evaluate the measures will result in extra passes of
data through core and thus incur unnecessarily large analyses time penalties on the

computer.
Recommended Measures

Table IX lists the recommended error measures in the order in which they
would arise in the usual analysis. Each of these checks requires few calculations
compared with those of the solution process. The set of checks is intended to
check calculations in critical errvors and provide a measure of the accuracy of
displacement and stress predictions.

The "number of calculations check" is proposed to eventually avoid equation
solution if the probability of success is low. The idea is to include this
calculation in all analyses in order to obtain statistical data relating problem
size to indicated deflection error and computer precision. For this purpose,
the number of calculations can probably be satisfactorily estimated by

N W
M= 2( 2 hw® + 22 /“/) -1

[=/)Z /':/,7’...

where £, is the number of degrees of freedom at a joint i
W. is the number of joints, with higher joint number than i,

which are elastically coupled to joint i during the decomposition

of row 1.
Wi is easily evaluated from the topology of the structure. The first term in Eq.
(5-1) estimates the total number of decomposition calculations and the second,
substitution calculations. The first term in Eq. (5-1) estimates non-trival
calculations in decomposition, The second estimates calculations in substitution.

- The numerical singularity check is recommended to insure that critical arith-
metic does not destroy accuracy. Reference 3, page 42-43, shows that if this test
indicates that large errors may arise, resequencing of the equations can usually
eliminate the difficulty.

The positive definite check provides an overall check on the reality of the
stiffness model. 1If any of the diagonals, Djj, are less than zero it is implied
that at least one structural deformation pattern can occur in which the principle
of conservation of energy is violated. This may not identify an unacceptable
mathematical model (for some geometries the Hrennikoff lattice exhibits this
deficiency4) but it signals the possibility of unrealizable structural response
predictions. 1If the diagonals are relative zeros, this test will identify the
existence of kinematic instability and may be extended to differentiate between
active and passive instabilities?.
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Table IX

Recommended Error Msasures

Measure Function How Evaluated When Evaluated No. of Calcs.

Number of Indicate problem size and Eq. (5-1) During 4N
Calculations desirability of cutting run preprocessing

Numerical Sense critical arithmetic Eq. (2-8) During 2N
Singularity during decomposition decomposition

Positive Insure that deformations Test D, ;=0 During back N
Definiteness require work substitution

Energy Evaluate norm of error Eq. (2-16) During back SN+1
Error predicted substitution

Stress Define error in stress Eq. (5-2) When stresses 6N
Precision are evaluated



The energy error measure provides a low cost measure of total analysis
(deflection) error. This study has shown that it correlates with analysis
error while avoiding critical arithmetic. At the same time, it reflects the
loading of interest and the associated structural response. When incorporated
in the back substitution process, it requires no special data handling or
transfers.

The stress precision check, when used with the energy error measure, permits
defining the relative accuracy of stress predictions. This check is defined as

0 Wk 2l .
- = e | L Y S (5-2)
€ - ot lad =704

where €¢Tis the relative stress precision error for element i,

k; is the stiffness matrix for element i,

A/is the subset of displacements for the joints of element i, and

=z is the total number of elements.
1f €q; is near zero no significant error has been incurred in differencing deflections
to evaluate stresses. If €5, is near 1, as many digits have been lost in stress
evaluation as there are nines following the decimal point. The total relative error
in stress predicitions can be determined by adding €4 to the relative energy error.

Consider again the cantilevered beam. Then Table X summarizes pertinent
error data for four sets of equations. Each row of the table lists error data
for one case. To illustrate the thinking in determining the accuracy of stress
predictions, consider the second row of data. Calculations were performed with 8.3
digits precision (p = 27), so € implies less than one digit loss of accuracy in
calculating deflections. Since eng is one, to six digits, about six digits of
precision are lost in stress predictions. Combining the error losses, the total loss
is about six digits of accuracy. Therefore, of the 8.3 digits of precision, about
two digits of accuracy remain.

The actual accuracy is listed in the second column of Table X. This
is based on the number of digits of accuracy in estimate of the applied load
found by taking the product of the stiffness matrix and the calculated deflections.
Comparing the data in the second and last columns shows that accuracy predicted
by Eq. (5-2) corresponds with the accuracy of element generalized force predictions.

Rejected Measures

Table XI cites several error measures whose use is rejected. 1In this table,
costly measures are those which require as many calculations to evaluate as
analysis of an additional loading. Very costly measures require as many calculations
as the total equation solution process.

Tests reported here provide the basis for rejecting residual and solution
measures. Reference 1 regorts the inadequacy of Maxwell reciprocity tests.
Reference 1 and Wilkinson® report the pessimism and unreliability of condition
number measures.
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Table X

Stress Measured and Predicted Accuracy*

Measured Measured Error Parameters Pye@icted

N Lood Residuar @2 lal® Mkedl  es. recurecy
6 6 4.65"10 200! 2.00  1-2.107° | 6
50 2 3.25"8  1.s6° 2.00 1~2.717° 2%
100 1 5.4678  2.36° 2.06 1-1.84"7 1
200 0 9.06°8 3,627 3.30 1-1.92-3 0

Exponent implies a power of 10. e.g. 2.I£3= 2.10 x lOT3

Ta

2

b=2,p=27 lk.ll= 226.

p)

$ € v, implies stresses depend on accuracy of last 8.3-5 % 3 digits
of deflections.

€ ™ implies eighth digit of deflection is in error. Therefore,

predicted accuvacy is 2 digits.
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Table XI

Rejected Error Measures

Measure Basis for Rejection
Condition ¢Very costly to evaluate
Numbers +«Lead to over conservative error bounds

+Insensitive to loading of interest

Maxwell + Costly to evaluate

Reciprocity +Unreliable since it may not be an independent check
Reaction «Unreliable since sample is too small

Check » May incur critical arithmetic
Solution + Very costly to evaluate when higher precision required

Error Clieck

Total « Cost to evaluate
Residual +« Inherently incurs critical arithmetic
Check
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Each of the measures recommended is reliable and requires few calculations.
They are the better of the measures examined. Taken together they can identify
critical numerical problem areas in the solution, define -deflection and stress

manipulation error magnitudes, and lead to statistical data relating the computer
precision to accuracy.
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Section 6
CONCLUSIONS

‘These tests have yielded the following conclusions on errors in numerical
analysis of mixed beam systems:

1. The maximum error bound based on the number of calculations is
very conservative. None of the tests gave decomposition errors
closer than 1 of the bound, forward substitution errors closer
T65
than 1_5, backward substitution closer than 1_3. No evidence was
10 10
. ] . . P .
educed showing a large increase in error occuring when b calculations
are exceeded even though the bound increases at that level.

2. Indicated errors are sensitive to error measuring details, loading
and details of arithmetic. Use of residual rather than solution
error measures can make differences of two or more orders of magnitude
in indicated errors. Change in loading can result in changes in
error of at least one order of magnitude. Minor changes in arithmetic
can change indicated errors by forty percent, even though the formula of
the algorithm is unchanged. The errors measures are affected by about
25 percent by changing from the Euclidean to the absolute value norm.

3. Inherited and decomposition errors are the more important error
sources. Forward and back substitution errors are relatively small
and diagonal division errors negligible. This conclusion justifies
use of the same precision arithmetic during decomposition as used
in developing stiffness coefficients. A major obsérvation is that
higher precision neéd not be used in evaluating displacements unless
stresses are required. Numerical singularity errors were also negligible
in all the test problems indicating satisfactory equation sequencing.

4. Four error checks are recommended for numerical analysis of
structures. The number of solution calculations should be estimated
during preprocessing to yield statistical error data. Numerical
singularity checks should be included in decomposition. Positive
definite checks should be performed during diagonal division. The
energy total error measure should be evaluated during back substitution.
A stress precision check should be made as stresses are calculated.
Re jected measures include Condition Number, reactions, total residual,
Maxwell reciprocity, and direct solution error checks.

5. Discretization errors are much greater than manipulation errors
even for beams modelled by up to 800 equations on a 27 bit mantissa
computer. This is true when equations are in good sort (See Ref. 2,
page 42.)



=

This study of manipulation errors in structural equation solutions has
involved a semiempirical approach. Eight error measures will be evaluated for
a range of problems to establish the relation between error magnitude and growth
as a function of error source, These data have led to identification of four
validated checks of displacement and stress prediction accuracy. Tha calculation
penalties for these checks are negligible compared with the total solution calcu-
lations. These necessary and efficient checks are recommended for all codes
involving computer numerical analyses of structures.
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